Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.115
Filtrar
1.
Sci Rep ; 14(1): 6042, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472226

RESUMO

Geospatial methods, such as GIS and remote sensing, map radon levels, pinpoint high-risk areas and connect geological traits to radon presence. These findings direct health planning, focusing tests, mitigation, and policies where radon levels are high. Overall, geospatial analyses offer vital insights, shaping interventions and policies to reduce health risks from radon exposure. There is a formidable threat to human well-being posed by the naturally occurring carcinogenic radon (222Rn) gas due to high solubility in water. Under the current scenario, it is crucial to assess the extent of 222Rn pollution in our drinking water sources across various regions and thoroughly investigate the potential health hazards it poses. In this regard, the present study was conducted to investigate the concentration of 222Rn in groundwater samples collected from handpumps and wells and to estimate health risks associated with the consumption of 222Rn-contaminated water. For this purpose, groundwater samples (n = 30) were collected from handpumps, and wells located in the Mulazai area, District Peshawar. The RAD7 radon detector was used as per international standards to assess the concentration of 222Rn in the collected water samples. The results unveiled that the levels of 222Rn in the collected samples exceeded the acceptable thresholds set by the US Environmental Protection Agency (US-EPA) of 11.1 Bq L-1. Nevertheless, it was determined that the average annual dose was below the recommended limit of 0.1 mSv per year, as advised by both the European Union Council and the World Health Organization. In order to avoid the harmful effects of such excessive 222Rn concentrations on human health, proper ventilation and storage of water in storage reservoirs for a long time before use is recommended to lower the 222Rn concentration.


Assuntos
Água Potável , Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Humanos , Água Potável/análise , Monitoramento de Radiação/métodos , Radônio/análise , Paquistão , Poluentes Radioativos da Água/análise , Água Subterrânea/análise , Poluição da Água/análise
2.
J Environ Radioact ; 274: 107411, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471302

RESUMO

Consumption of local and imported bottled water in Canada has greatly increased during the past three decades. While the presence of natural radioactivity is often overlooked when dealing with the water quality of these bottled products, it could contribute substantially to the uptake of radionuclides especially when sourced from regions with higher radioactivity levels compared to where it is consumed. In this study, the activity of several naturally occurring radionuclides (i.e., 210Po, 226,228Ra, 230,232Th, 234,235,238U) were measured in bottled water available in Québec, Canada after sample pretreatment and analysis by either radiometric or mass spectrometry approaches. 230,232Th and 228Ra concentrations were below minimum detectable activity levels in all samples tested. Analytical results for 234U, 235U, 238U, and 226Ra showed concentrations that ranged from 0.38 to 115 mBq/L, (2.2-313) x 10-2 mBq/L, 0.48-58.4 mBq/L, and 1.1-550 mBq/L, respectively. 210Po was detected in only 5 samples and its activity ranged from 2 to 26 mBq/L. To determine variability in activity within brands, the same brands of bottled water were purchased during two consecutive years and analyzed. The possible radiological impact of the consumption of these types of water was assessed based on different drinking habit scenarios. Some of the imported water brands showed higher activity concentrations than local sources or tap water, suggesting that individuals drinking predominantly imported bottled water would receive a higher radiation dose than those who drink mainly local water.


Assuntos
Água Potável , Monitoramento de Radiação , Poluentes Radioativos da Água , Humanos , Água Potável/análise , Quebeque , Poluentes Radioativos da Água/análise , Monitoramento de Radiação/métodos , Radioisótopos/análise , Canadá
3.
Environ Pollut ; 346: 123681, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428789

RESUMO

This work reports comprehensive time-series datasets over the past 50 years for natural (210Po) and anthropogenic (134Cs and 137Cs) radionuclides in three fish species (cod, herring and plaice) from Danish marine areas covering the North Sea, Kattegat, and Baltic Sea. Impact from the global fallout of atmospheric nuclear weapons testing, radioactive discharges from the European nuclear reprocessing plants and release from Chernobyl accident are clearly detected in the fish samples. While 210Po concentrations in each fish species demonstrated comparable levels across the three regions without notable temporal trends, significantly higher median 210Po concentration was observed in the lower trophic level fish, namely herring and plaice, compared to cod. In contrast, 137Cs concentrations in all three species steadily decrease over time after the Chernobyl-attributed peaks in late 1980s in the entire study area, whereas 137Cs always demonstrated higher concentrations in cod than herring and plaice. Our calculated concentration factors (CFs) for 137Cs in this work indicate that the mean CFs for 137Cs over the past 50 years are significantly different across the three species, following the order of cod < herring < plaice. Based on the time-series data, ecological half-lives (Teco) of 137Cs in fish from Danish marine areas were estimated to evaluate the long-term impact of anthropogenic radioactive contamination in different regions. Our results indicate no significant difference in Teco across different fish species, whereas the weighted mean Teco for fish in the Baltic Sea (29.3 ± 3.9 y) is significantly longer than those of the North Sea (9.8 ± 0.9 y) and Kattegat (11.7 ± 1.2 y), reflecting the strong 'memory effect' of the Baltic Sea due to its slow water renewal. However, the dose assessment demonstrates that the contribution of the natural radionuclide 210Po to ingestion dose from fish consumption is 1-2 order of magnitude higher compared to that of 137Cs.


Assuntos
Radioatividade , Poluentes Radioativos da Água , Animais , Poluentes Radioativos da Água/análise , Mar do Norte , Radioisótopos de Césio/análise , Peixes , Dinamarca
5.
Appl Environ Microbiol ; 90(4): e0211323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470121

RESUMO

A major incident occurred at the Fukushima Daiichi Nuclear Power Station following the tsunami triggered by the Tohoku-Pacific Ocean Earthquake in March 2011, whereby seawater entered the torus room in the basement of the reactor building. Here, we identify and analyze the bacterial communities in the torus room water and several environmental samples. Samples of the torus room water (1 × 109 Bq137Cs/L) were collected by the Tokyo Electric Power Company Holdings from two sampling points between 30 cm and 1 m from the bottom of the room (TW1) and the bottom layer (TW2). A structural analysis of the bacterial communities based on 16S rRNA amplicon sequencing revealed that the predominant bacterial genera in TW1 and TW2 were similar. TW1 primarily contained the genus Limnobacter, a thiosulfate-oxidizing bacterium. γ-Irradiation tests on Limnobacter thiooxidans, the most closely related phylogenetically found in TW1, indicated that its radiation resistance was similar to ordinary bacteria. TW2 predominantly contained the genus Brevirhabdus, a manganese-oxidizing bacterium. Although bacterial diversity in the torus room water was lower than seawater near Fukushima, ~70% of identified genera were associated with metal corrosion. Latent environment allocation-an analytical technique that estimates habitat distributions and co-detection analyses-revealed that the microbial communities in the torus room water originated from a distinct blend of natural marine microbial and artificial bacterial communities typical of biofilms, sludge, and wastewater. Understanding the specific bacteria linked to metal corrosion in damaged plants is important for advancing decommissioning efforts. IMPORTANCE: In the context of nuclear power station decommissioning, the proliferation of microorganisms within the reactor and piping systems constitutes a formidable challenge. Therefore, the identification of microbial communities in such environments is of paramount importance. In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, microbial community analysis was conducted on environmental samples collected mainly outside the site. However, analyses using samples from on-site areas, including adjacent soil and seawater, were not performed. This study represents the first comprehensive analysis of microbial communities, utilizing meta 16S amplicon sequencing, with a focus on environmental samples collected from the radioactive element-containing water in the torus room, including the surrounding environments. Some of the identified microbial genera are shared with those previously identified in spent nuclear fuel pools in countries such as France and Brazil. Moreover, our discussion in this paper elucidates the correlation of many of these bacteria with metal corrosion.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Água/análise , Radioisótopos de Césio/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Poluentes Radioativos da Água/análise , Japão
6.
J Environ Radioact ; 274: 107400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387245

RESUMO

Transuranium elements such as Np, Pu and Am, are considered to be the most important radioactive elements in view of their biological toxicity and environmental impact. Concentrations of 237Np, Pu isotopes and 241Am in two sediment cores collected from Peter the Great Bay of Japan Sea were determined using radiochemical separation combined with inductively coupled plasma mass spectrometry (ICP-MS) measurement. The 239,240Pu and 241Am concentrations in all sediment samples range from 0.01 Bq/kg to 2.02 Bq/kg and from 0.01 Bq/kg to 1.11 Bq/kg, respectively, which are comparable to reported values in the investigated area. The average atomic ratios of 240Pu/239Pu (0.20 ± 0.02 and 0.21 ± 0.01) and 241Am/239+240Pu activity ratios (3.32 ± 2.76 and 0.45 ± 0.17) in the two sediment cores indicated that the sources of Pu and Am in this area are global fallout and the Pacific Proving Grounds through the movement of prevailing ocean currents, and no measurable release of Np, Pu and Am from the local K-431 nuclear submarine incident was observed. The extremely low 237Np/239Pu atomic ratios ((2.0-2.5) × 10-4) in this area are mainly attributed to the discrepancy of their different chemical behaviors in the ocean due to the relatively higher solubility of 237Np compared to particle active plutonium isotopes. It was estimated using two end members model that 23% ± 6% of transuranium radionuclides originated from the Pacific Proving Grounds tests, and the rest (ca. 77%) from global fallout.


Assuntos
Plutônio , Monitoramento de Radiação , Cinza Radioativa , Poluentes Radioativos da Água , Cinza Radioativa/análise , Japão , Baías , Poluentes Radioativos da Água/análise , Radioisótopos/análise , Plutônio/análise
7.
Mar Pollut Bull ; 201: 116168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412795

RESUMO

To assess ocean-scale transport systems, we examined the latitudinal cross-sectional distribution of 137Cs activity concentrations in the Indian and Southern Oceans between December 2019 and January 2020 using low-background γ-spectrometry. At 0°-20°S, 137Cs concentrations exhibited a gradual decrease below the mixing layer (1-0.1 mBq/L). However, the concentrations steeply decreased toward the Southern Ocean along a transect of 30°-60°S (from 0.8 to 0.02 mBq/L) with minor vertical variation at each site. For the 137Cs inventories (0-800 m depth) from 15 to 600 Bq/m2, a maximum value was recorded at 30°S, indicating the downwelling of 137Cs as a reservoir for the Subantarctic Mode Water. The significantly low concentrations (0.02 mBq/L) at 60°S suggest minimal transport of 137Cs to the Southern Ocean. These findings assist in understanding 137Cs circulation patterns and provide valuable insights into the transport pathways of soluble contaminants.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Água do Mar/química , Estudos Transversais , Poluentes Radioativos da Água/análise , Oceanos e Mares , Radioisótopos de Césio/análise
8.
J Contam Hydrol ; 261: 104298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242064

RESUMO

Groundwater contamination at legacy uranium processing sites is an ongoing global challenge. Plumes at many uranium-contaminated sites are more persistent than originally predicted by groundwater modeling. Previous investigations of uranium plume persistence identified residual and secondary sources that contribute to plume longevity, but there is a remaining need to revise forecasted cleanup times using information about these ongoing sources. The purpose of this study is to investigate the quantitative impact of residual vadose zone sources of uranium on groundwater remediation time frame. This objective was approached by applying numerical uranium transport simulations and uncertainty analysis to a former uranium mill site in the southwestern United States. Information from recent site investigations provided details about the distribution and release characteristics of uranium accumulations in the vadose zone. The residual uranium characteristics were incorporated as decaying source terms in the transport model. A stochastic approach using an iterative ensemble smoother was applied for history matching, and the transport model was used to assess the impact of multiple remedial alternatives on forecasted time frame. The forecasted time frame to achieve the groundwater remediation goal for uranium by monitored natural attenuation is on the order of thousands of years, and treatment of the dissolved plume does not reduce the projected time frame. The large proportion of residual uranium mass remaining in the vadose zone and the gradual leaching rate due to the site's semiarid climate create a long-lived source that can sustain a dissolved plume for thousands of years despite an estimated 99% mass removal achieved during mill tailings disposal. Residual uranium in vadose zone sediments beneath former tailings impoundments could present comparable uranium plume persistence and remediation challenges at other legacy uranium mill sites in semiarid climates. Other remaining uranium-impacted sites are similarly complex, and forecasted remedial time frames are needed to effectively achieve compliance, manage risk, assess the benefits of additional treatment, manage and project costs, and support beneficial site reuse.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Urânio/análise , Poluentes Radioativos da Água/análise
9.
Environ Sci Pollut Res Int ; 31(5): 7818-7827, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38170359

RESUMO

This article discusses tritium concentrations in monthly precipitation in part of the Difficult-to-Return Zone in Namie Town during 2012-2021. The tritium concentrations, which were measured with a low background liquid scintillation counter after carrying out an enrichment procedure, fluctuated seasonally from 0.10 ± 0.02 to 0.85 ± 0.02 Bq L-1. This range of concentrations is concluded to not be unusual based on comparisons with the concentrations at other sites and estimates of the past range of the concentrations. Moreover, no significant variations in observed tritium concentrations were observed due to decommissioning work at the Fukushima Dai-ichi Nuclear Power Plant. These results contribute to understanding the background level of tritium concentration in precipitation before the oceanic discharge of treated water from the Fukushima plant. In addition, this article evaluates the amount of tritium supplied to the ocean by terrestrial rainwater pouring into the Pacific Ocean via Ukedo River, which flows through Namie Town; this information will contribute to the discussion on the impact of the oceanic discharge of treated water.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Trítio , Poluentes Radioativos da Água/análise , Japão , Radioisótopos de Césio/análise , Água
10.
J Environ Radioact ; 272: 107364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171109

RESUMO

Plutonium-239 + 240 and 137Cs in the environment can usually be used to track the impact of nuclear activities on the environment, and have become important tools in environmental geochemical studies. In this study, nine sediment cores (E1-E9) in Lake East Dongting were collected and measured for the activity concentration of 239+240Pu, 137Cs and the atomic ratio of 240Pu/239Pu, and then their vertical distribution characteristics were analyzed. The results show that: the activity concentrations of 137Cs and 239+240Pu in Lake East Dongting ranged from 5.26 ± 0.43 to 28.6 ± 2.23 Bq kg-1 and 0.29 ± 0.02 to 1.37 ± 0.09 Bq kg-1, with an average of 7.48 ± 0.68 Bq kg-1 and 0.39 ± 0.03 Bq kg-1, respectively. The atomic ratios of 240Pu/239Pu are 0.168 ± 0.012-0.211 ± 0.015, which are basically consistent with the global atmospheric deposition. The vertical profiles of 137Cs and 239+240Pu in sediment cores show obvious single-peak distribution in E1-E6 and bimodal distribution in E7-E9. The results of sedimentation rates calculated by 137Cs and 239+240Pu method ranged from 0.59 cm y-1 to 1.99 cm y-1 with a mean of 1.18 cm y-1 and 0.61 cm y-1 to 2.18 cm y-1 with a mean of 1.26 cm y-1. The inventories of 137Cs and 239+240Pu in nine sediment cores are 5.87-10.8 kBq m-2 and 307-545 Bq m-2, which are about 8-14 and 9-15 times the inventory in the global average atmospheric deposition at the same latitude respectively. Comparing the results of the sedimentation rates and the inventories from different sampling points indicates that extreme climatic events and human activities have a significant impact on sediment environment of Lake East Dongting.


Assuntos
Radioisótopos de Césio , Plutônio , Monitoramento de Radiação , Poluentes Radioativos da Água , Humanos , Lagos , Sedimentos Geológicos , Poluentes Radioativos da Água/análise , Plutônio/análise
11.
Sci Total Environ ; 914: 169959, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190894

RESUMO

Uranium is one of the sensitive radionuclides in the wastewater of nuclear powers. Due to the fact that nuclear powers are mainly located in coastal areas, the elimination of uranium (U(VI)) pollution from coastal nuclear power is ultimately rely on marine microorganisms. The fixing of U(VI) on V. alginolyticus surface or converting it into sediments is an effective elimination strategy for U(VI) pollution. In this work, typical marine microorganism V. alginolyticus was used to evaluate the elimination of U(VI) pollution by marine microorganisms. Effects of solution conditions (such as pH, temperature, and bacterium concentrations) on the physicochemical properties and elimination capabilities of V. alginolyticus were studied in detail. FT-IR, XPS and XRD results reveal that COOH, NH2, OH and PO4 on V. alginolyticus were main functional groups for U(VI) elimination and formed (UO2)3(PO4)2·H2O. The elimination of U(VI) by V. alginolyticus includes two stages of adsorption and biomineralization. The theoretical maximum adsorption capacity (Cs,max) of V. alginolyticus for U(VI) can reach up to 133 mg/g at pH 5 and 298 K, and the process reached equilibrium in 3 h. Results show that V. alginolyticus play important role in the elimination of U(VI) pollution in seawater.


Assuntos
Urânio , Poluentes Radioativos da Água , Urânio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Centrais Nucleares , Poluentes Radioativos da Água/análise , Poluição Ambiental , Adsorção , Cinética
12.
Sci Total Environ ; 914: 169936, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199370

RESUMO

Nuclear power plants, recognized for their extended operational life, minimal greenhouse gas emissions, and high-power density, are deemed as reliable energy sources. Nonetheless, concerns persist regarding the radioactive discharges from these plants and their potential impact on health and the environment. To comprehend the radiological implications of such releases, this study presents, for the first time, an analysis of radiological data from 7 Indian nuclear power plants (NPPs), collected by Indian environmental survey laboratories (ESL) over the past two decades (2000-2020). This dataset encompasses radioactivity concentrations in the atmospheric, aquatic, and terrestrial environments within a 30 km radius of each NPP, as well as the annual cumulative external gamma doses recorded by environmental thermoluminescence dosimeters (TLDs). The analysis yielded several key findings: (i) Radioactivity concentrations around the NPPs were low and comparable to values measured at other nuclear power plant sites worldwide; (ii) Tritium concentrations in receiving water bodies were <1 % of the internationally recommended limit of 10,000 Bq/l; (iii) The estimated total radiation doses to the public were at most 10 % of the stipulated regulatory dose limit of 1000 µSv and consistently decreased over the study period and (iv) Variations in doses among the NPP sites were primarily attributed to legacy technology used in specific reactors. These results indicate efficient and secure reactor operations and the minimal contribution of Indian nuclear power plants to anthropogenic doses in the country. The findings hold potential significance for reinforcing India's commitment to advancing its nuclear power program.


Assuntos
Monitoramento de Radiação , Succinimidas , Poluentes Radioativos da Água , Centrais Nucleares , Monitoramento de Radiação/métodos , Trítio , Poluentes Radioativos da Água/análise , Centrais Elétricas
13.
Radiat Environ Biophys ; 63(1): 97-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197922

RESUMO

Uranium mining can cause environmental impacts on non-human biota around mine sites. Because of this, the reduction in non-human biota exposure becomes an important issue. Environmental radioprotection results from the evolution of human radioprotection; it is based on dose rate to non-human biota and uses, as a biological target, and has harmful effects on populations. In the present study, a flooded impoundment created following dam construction in a uranium mine plant undergoing decommissioning was investigated. Internal dose rates due to activity concentration of natural uranium (Unat) and 232Th in omnivorous, phytophagous, and carnivorous fish species were estimated. Radionuclide activity concentrations were obtained by spectrophotometry with arsenazo III in the visible range. The dose rate contribution of 232Th was lower than that of Unat. There were no differences between the internal dose rates to studied fish species due to 232Th, but there were differences for Unat. A dose rate of 2.30·10-2 µGy∙d-1 was found due to the two studied radionuclides. Although this value falls below the benchmark for harmful effects, it is important to acknowledge that the assessment did not account for other critical radionuclides from uranium mining, which also contribute to the internal dose. Moreover, the study did not assess external doses. As a result, the possibility cannot be excluded that dose rates at the study area overcome the established benchmarks for harmful effects.


Assuntos
Monitoramento de Radiação , Urânio , Poluentes Radioativos da Água , Animais , Tório/análise , Urânio/análise , Brasil , Radioisótopos , Poluentes Radioativos da Água/análise
14.
J Environ Radioact ; 273: 107386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286077

RESUMO

Following the accident at the Fukushima Dai-ichi Nuclear Power Station, radiocaesium concentrations were specifically elevated in rockfish species compared to other fish species. To clarify the likely reasons, a caesium metabolic rate in the Japanese rockfish Sebastes cheni was derived by an aquarium experiment of live fish collected from the area off Fukushima. Stable caesium and 137Cs concentration in prey organisms, stomach contents and muscle of rockfish were measured and the bioavailable fraction in prey organisms was evaluated. Using derived transfer parameters, 137Cs radioactivity levels in S. cheni and prey organisms were simulated by a model, and verified by the measured radioactivity concentrations of biota in coastal waters south of the Fukushima Dai-ichi Nuclear Power Station. As a result, slow caesium metabolism in S. cheni was confirmed with the biological half-life (Tb1/2) of 190 d. The determining factor for the initial 137Cs radioactivity levels in S. cheni, was the maximum radioactivity levels in surrounding seawater which was constrained by the sedentary nature of rockfish. Controlling factors of depuration rate of 137Cs levels in S. cheni were slow caesium metabolism, enhanced 137Cs radioactivity level of prey organisms, and survival of older contaminated individuals due to a long life-span. During the study period 2017-2021, 137Cs radioactivity concentrations in seawater decreased close to the level measured before 2010, whereas those in prey organisms and rockfish in southern Fukushima waters were still above the levels that existed before 2010. An additional source for enhancing 137Cs radioactivity in rockfish and biota of the food chain was indicated by the greater 137Cs/133Cs atom ratios in rockfish compared to those in the surrounding seawater, however it was considered to be radiologically insignificant in relation to seafood safety limits.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Animais , Poluentes Radioativos da Água/análise , Peixes/metabolismo , Radioisótopos de Césio/análise , Japão
15.
J Environ Manage ; 353: 120207, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281428

RESUMO

The release of uranium from uranium tailings into the aqueous environment is a complex process controlled by a series of interacting geochemical reactions. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling and mixed to analyze the fugacity state of U. Static leaching experiments of U at different pH, oxidant concentration and solid-to-liquid ratios and dynamic leaching experiments of U at different pH were carried out, and the adsorption and desorption behaviour of U in five representative stratigraphic media were investigated. The results show that U is mainly present in the residue state in uranium tailings, that U release is strong in the lower pH range, that the leached U is mainly in the form of U(VI), mainly from the water-soluble, Fe/Mn oxides and exchangeable fraction of uranium tailings, and that the reduction in U leaching at higher pH is mainly due to the combined effect of precipitation formation and larger particle size of platelets in uranium tailings. Experiments with different oxidant concentrations and solid-liquid ratios showed that the oxygen-enriched state and low solid-liquid ratios were favorable for the leaching of U from uranium tailings. Adsorption and desorption experiments show that U is weakly adsorbed in representative strata, reversibly adsorbed, and that U is highly migratory in groundwater. The present research results have important guiding significance for the management of existing uranium tailings ponds and the control of U migration in groundwater, which is conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.


Assuntos
Poluentes Radioativos do Solo , Urânio , Poluentes Radioativos da Água , Urânio/análise , Adsorção , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Água , Oxidantes
16.
Sci Rep ; 14(1): 2530, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291175

RESUMO

The article summarizes the activity concentrations data of 226Ra and the sum of uranium isotopes (∑U) in samples of drinking underground water for different regions of Ukraine studied during 1998-2023 in the radiation monitoring laboratory of the State Institution "O.M. Marzieiev Institute of Public Health National Academy of Medical Sciences of Ukraine. Arithmetic mean and standard deviations, minimum and maximum values for 226Ra and ∑U activity concentrations are presented for the entire 1240 sample set and for each region separately. Collected data show that the established state permissible level for drinking water of 1.0 Bq/l is exceeded for 226Ra in 1.1% of the studied samples, and for ∑U-in 3.9% correspondingly. The detected high levels of 226Ra and ∑U activity concentrations correspond to certain regions belonging to the Ukrainian crystalline shield territory. A comparison of the current data with the data of previous studies held during of 1989-1991 indicates a significant difference: for the previous studies the average and standard deviations are much higher. We attribute this to the fact that the centralized sampling of previous studies was random, and it was related exclusively to communal water supply systems. At the same time, the current sample set covers a much larger number of regions, different water consumers; the data set includes the results of repeated studies for a large number of sources, in particular, sources with purified water. Hypothetical exposure doses caused by consumption of 226Ra and ∑U in water for the current sample set were estimated for different age groups for each sample studied, as is, without taking into account the pattern of water consumption. The corresponding dose exceeds the WHO recommended value of 0.1 mSv per year for children under the age of one year for 220 cases (17.7%). This dose limit excess for other age groups corresponds-for children: aged 12-17 years-13.1%, aged 1-2 years-7.4%, 7-12 years old-5.6%, 2-7 years old-3.9% and for adults-4.1%.


Assuntos
Água Potável , Monitoramento de Radiação , Rádio (Elemento) , Urânio , Poluentes Radioativos da Água , Adulto , Criança , Humanos , Pré-Escolar , Urânio/análise , Ucrânia , Monitoramento de Radiação/métodos , Poluentes Radioativos da Água/análise
17.
Int J Environ Health Res ; 34(2): 1215-1226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37165966

RESUMO

The variation of dissolved radon levels in water supplies remains of interest since radon ingested through drinking water can give considerable radiation to the lining of the stomach. This study aims to determine the radon concentration levels in bottled spring drinking water (BSW) brands commercially sold in Turkey using a radon gas monitor and to assess the internal radiation exposure caused by the ingestion and inhalation of radon. The activity concentrations of radon analyzed in 77 BSW brands varied from 7.1±0.8 to 28.7±2.7 mBq/L with an average of 15.7±5.1 mBq/L. The total annual effective dose was estimated to assess the radiological risk for three age groups in four different scenarios based on annual drinking water intake. All estimated dose values are well below the recommended reference dose of 100 µSv for drinking water. Therefore, radon gas in the investigated BSW samples poses no significant radiological risk to the public.


Assuntos
Água Potável , Exposição à Radiação , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Radônio/análise , Turquia , Poluentes Radioativos da Água/análise , Exposição à Radiação/análise
18.
Mar Pollut Bull ; 198: 115901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086108

RESUMO

Since the accident at the Fukushima Daiichi nuclear power plant (FDNPP) in March 2011 seawater is still needed to cool the reactor cores. This water, contaminated with radionuclides, has been collected in tanks and treated on the site of the FDNPP. In 2021, the Japanese government decided to gradually discharge treated water into the ocean, which started on the 24th of August 2023 and will continue for the next 30 years. This paper provides a critical analysis of the models that were used in the different radiological impact studies. Based on the analysis, a hydrodynamic and a compartment models with a harmonized setup were used to estimate the impact of the discharge on humans and biota. Doses obtained with these two models were within one order of magnitude for humans (<0.1 µSv/year) and for biota (<10-6 mGy/d) indicating that harmonization of the model parameters improved the reliability of the simulation results.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Humanos , Água , Reprodutibilidade dos Testes , Poluentes Radioativos da Água/análise , Monitoramento de Radiação/métodos , Japão , Radioisótopos de Césio/análise
19.
J Environ Radioact ; 272: 107354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086286

RESUMO

Particulate matter trapped by tufts of water moss Fontinalis antipyretica inhabiting fast flowing waters of the Yenisei River (Siberia, Russia) contaminated with artificial radionuclides has been studied as a potential monitor of radioactive releases to the river. Particulate matter, which was removed from wet tufts of water moss of the Yenisei by rinsing them in water, constituted at least 38% of bulk dry weight of the moss biomass sample and was similar in the contents of chemical elements, minerals, organic matter, and artificial radionuclides to bottom sediments of the Yenisei. Considerable bulk percentages of artificial radionuclides in the sample of water moss, 77% of 137Cs, 44% of 60Co, 41% of 152Eu, 55% of 154Eu, 66% of 241Am, and 34-36% of plutonium were associated with extracellular particles. The comparative study and correlation analysis suggested that 137Cs was mainly associated with mineral particles trapped by moss and that organic matter was responsible for binding plutonium in samples of water moss. Consequently, analysis of extracellular particles of water moss can provide data on contents and speciation of radionuclides transported by water current. Although a considerably high proportion of particulate matter had been washed out from tufts of water moss, some extracellular mineral particulate material and a large number of epiphytic diatoms remained attached to leaves of water moss. Our study proves that particulate matter trapped by water moss can be used as an informative monitor to trace radioactive pollutants transported by water current in running waters deficient in bottom sediments and potential biomonitors.


Assuntos
Plutônio , Monitoramento de Radiação , Poluentes Radioativos da Água , Rios/química , Água , Material Particulado/análise , Plutônio/análise , Poluentes Radioativos da Água/análise , Radioisótopos de Césio/análise , Minerais/análise , Sedimentos Geológicos
20.
Radiat Prot Dosimetry ; 200(4): 339-354, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38148716

RESUMO

This study focused on assessing the risk from the exposure to radon contained in domestic water for a significant part (~20%) of the Greek population. Also, the variation of radon in domestic water was monitored from 2017 to 2023 in certain villages that showed relatively high radon levels and relied on boreholes for their water supply. The radon in domestic water activity concentrations measured in the investigated Greek places ranged from lower than the minimum detection limit (2 Bq L-1) levels up to 187 Bq L-1 with an average value of 9.1 Bq L-1. Overall, higher radon in domestic water activity concentrations were observed in places supplied from boreholes located inside granitic and metamorphic rock areas. Only one out of the 487 examined places, which accounts for 0.015% of the examined Greek population, showed an average radon-in-water activity concentration higher than the parametric value of 100 Bq L-1 adopted by Greece following the EURATOM Directive (2013/51/EURATOM). Therefore, radon-in-water does not pose a health concern (risk) for the investigated Greek population. The total (inhalation and ingestion) annual effective doses to adults, corresponding to the measured radon-in-water activity concentrations, ranged from nearly 0 to 1.20 mSv y-1 with an average value of 0.059 mSv y-1, while for children, they ranged from almost 0 to 1.26 mSv y-1 with an average value of 0.061 mSv y-1. Regarding the variation of radon in domestic water monitoring, places supplied with water from one borehole showed no significant fluctuations from their average radon-in-water activity concentration, with standard deviations of ~20% at a coverage factor of k = 1. Even though some places supplied from three to four boreholes showed no significant fluctuations (standard deviation <= 30% at k = 1) from their average radon level, special attention is needed for places supplied from many boreholes when one measurement over the year is to be performed for the annual effective dose assessment. This is because the prevailing during-year borehole combination may not exist on the measurement day, resulting in an underestimated or overestimated dose assessment. Radon removal from domestic water supplies in the Arnea village (due to elevated radon-in-water activity concentrations) did not affect the inhalation risk for the residents of an examined house in Arnea. However, radon removal from the water supply was essential to reduce the ingestion risk for the house occupants. There is a possibility of radiation overexposure (>20 mSv y-1) for the workers in a thermal spa on Ikaria Island, and further investigation needs to be conducted with extended measurement periods.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Criança , Adulto , Humanos , Radônio/análise , Grécia , Monitoramento de Radiação/métodos , Poluentes Radioativos da Água/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...